On proximinal subspaces of vector-valued Orlicz–Musielak spaces
نویسندگان
چکیده
منابع مشابه
Strongly Proximinal Subspaces in Banach Spaces
We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.
متن کاملProximinal and Strongly Proximinal Subspaces of Finite codimension
Let X be a normed linear space. We will consider only normed linear spaces over R (Real line), though many of the results we describe hold good for n.l. spaces over C (the complex plane). The dual of X, the class of all bounded, linear functionals on X, is denoted by X∗. The closed unit ball of X is denoted by BX and the unit sphere, by SX . That is, BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖...
متن کاملON k-SUBSPACES OF L -VECTOR-SPACES
Let k ⊆ L be division rings, with [L : k ]right < ∞, and let Bk ⊆ AL be right vector spaces. Conditions are established in terms of the k-codimension of B in A, respectively the k-dimension of B, for there to exist a nonzero element a ∈A such that aL ∩ B = {0}, respectively an L-linear functional f on A such that f (B) = L . Some consequences and related open questions are discussed. Suppose k ...
متن کاملOn the Proximinality of the Unit Ball of Proximinal Subspaces in Banach Spaces: a Counterexample
A known, and easy to establish, fact in Best Approximation Theory is that, if the unit ball of a subspace G of a Banach space X is proximinal in X, then G itself is proximinal in X. We are concerned in this article with the reverse implication, as the knowledge of whether the unit ball is proximinal or not is useful in obtaining information about other problems. We show, by constructing a count...
متن کاملBall Proximinal and Strongly Ball Proximinal Spaces
Let Y be an E-proximinal (respectively, a strongly proximinal) subspace of X. We prove that Y is (strongly) ball proximinal in X if and only if for any x ∈ X with (x+ Y ) ∩BX 6= ∅, (x+ Y ) ∩BX is (strongly) proximinal in x+Y . Using this characterization and a smart construction, we obtain three Banach spaces Z ⊂ Y ⊂ X such that Z is ball proximinal in X and Y/Z is ball proximinal in X/Z, but Y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2013
ISSN: 0021-9045
DOI: 10.1016/j.jat.2013.07.002